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Several numerical schemes for the solution of hyperbolic conservation laws are based on 
exploiting the information obtained by considering a sequence of Riemann problems. It is 
argued that in existing schemes much of this information is degraded, and that only certain 
features of the exact solution are worth striving for. It is shown that these features can be 
obtained by constructing a matrix with a certain “Property U.” Matrices having this property 
are exhibited for the equations of steady and unsteady gasdynamics. In order to construct 
them, it is found helpful to introduce “parameter vectors” which notably simplify the structure 
of the conservation laws. 

We consider the initial-value problem for a hyperbolic system of conservation 
laws, i.e., we seek a vector u(x, t) such that 

and 

u, + F, =O, (1) 

u(x, 0) = uo(x>, (2) 

where F is some vector-valued function of u, such that the Jacobian matrix 
A = aF/au has only real eigenvalues. 

We introduce the discrete representation xi = x0 + i Ax, I,, = t, + n At, and suppose 
that I$’ is some approximation to u(xI, t,). 

A multitude of strategies have been devised to obtain numerical results for the 
discrete problem, and their relative merits are still largely unclear. We shall address 
in this paper some questions relating to those methods which attempt to construct the 
solution by solving a succession of Riemann problems. Recall that the Riemann 
problem is the initial-value problem obtained when the general data, Eq. (2), is 
specialised to 

u(x, 0) = UL (x < 0); u(x, 0) = UR (x > 0). (3) 
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That is, we study the break-up of a single discontinuity. Those cases where F(u) is 
linear are well-known and essentially trivial (see [I] for a brief discussion). Those 
cases where u is scalar and F is non-linear can be surprisingly intricate, but have 
been thoroughly investigated [2]. If u is a vector and F is non-linear, then the 
problem involves non-linear algebraic equations together with, usually, logical 
conditions which express the fact that a given member of the wave system may be 
present either as a shockwave or as an expansion fan. A review of results relating to 
the general Riemann problem has been given by Lax [3]. In general, the most 
efficient way to solve these equations will depend on the system of conservation laws 
(1) from which they derive; ingenuity is required to exploit special features of each 
individual system. For the special case of the unsteady Euler equations in one space 
dimension, an algorithm was devised by Godunov [4], and is available in the books 
by Richtmyer and Morton [5], and Holt [6]. A variant which converges more rapidly 
was worked out by van Leer [7]. 

The usual way of incorporating the Riemann problem into the numerical solution 
is to take (ul, uy+ i), for each i in turn, as pairs of states defining a sequence of 
Riemann problems, which are then thought of as providing information about the 
solution within each interval (i, i + 1). Various individual methods are then 
distinguished by the way in which this information is put to use. Briefly, we review 
these below. 

Godunov [4] supposed that the initial data could be replaced by a piecewise 
constant set of states with the discontinuities at {xi+,,*}. He then found the exact 
solution to this simplified problem. After some time step At (less than Ax divided by 
the greatest wavespeed found in the Riemann solutions) he replaced the exact solution 
by a new piecewise constant approximation, whilst preserving integral properties of 
the conserved variable u. The first major extension to this line of approach was made 
by van Leer [7], who approximated the data, and the solution at each subsequent 
time level, by piecewise linear segments, allowing discontinuities between the 
segments. This required the solution to an interaction problem which was more 
general than Riemann’s, but raised the order of accuracy of the method from one to 
two. 

A parallel line of development was initiated by Glimm [8], who followed Godunov 
as far as the exact solution to the simplified problem, but then obtained the new 
approximation by a random sampling procedure. The sampling produces solutions 
which are conservative only on the average, but has the advantage that near a 
moving, isolated, discontinuity, the solution is incremented either by the full amount 
of the jump, or not at all. In this way, initially sharp discontinuities remain sharp, 
and for some technical problems this property is important. More refined sampling 
procedures have been introduced (see, e.g., Chorin [9], but so far the accuracy of the 
method approaches unity from below. 

It seems to the present author that the expense of producing an accurate solution to 
the Riemann problem would only be justified if the abundance of information which 
is thereby made available could be put to some rather sophisticated use. Indeed, it 
must somehow be true that the accuracy with which it is worthwhile solving the 
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Riemann problem will be limited by the way we intend using the solution. For 
example, we may consider the use of less accurate solutions in existing methods. 
Harten and Lax [lo] have devised an approximate Riemann solver particularly 
designed for incorporation into Godunov-type or Glimm-type difference schemes. The 
approximation developed herein could be (and has been) used in the same way, but in 
comparison with the Harten and Lax approximation it suffers the theoretical disad- 
vantage of not having a naturally constructed entropy condition; this point will be 
discussed in more detail later. On the other hand, the present approximation is 
designed to provide the information needed to obtain high formal accuracy, following 
the strategy set out by Roe ( 11. That paper essentially described a mechanism by 
which any algorithm developed for numerical solution of the linear advection 
equation 

24, + au, = 0 (4) 

can be generalised to the case of non-linear systems. A large body of unpublished 
numerical results for Burger’s equation, the non-linear shallow-water equations, and 
the steady and unsteady Euler equations, demonstrates that all qualitative features of 
each algorithm are faithfully transmitted by the mechanism. The same evidence 
suggests that accuracy also carries over, at least to third order. An essential stage in 
the mechanism is the approximate solution of a non-linear Riemann problem. 

In this paper we consider approximate solutions which are exact solutions to an 
approximate problem, viz., 

where A” is a constant matrix, and the data (uL, IQ) are of course unaltered. 2 is to be 
chosen so that it is representative of local conditions. Candidates which immediately 
come to mind are A’= {(A, + AR), or A’= A(f(u, + Q)). We shall, however, only 
accept a matrix A”(u,, IQ) which satisfies the following list of properties: 

(i) It constitutes a linear mapping from the vector space u to the vector 
space F. 

(ii) As uL -+ Us -+ u, A”(u, , uR) -+ A(u), where A = aF/ih 

(iii) For any uL, uR, x(u,, uR) X (uL - uR) = F, - F, . 
(iv) The eigenvectors of 2 are linearly independent. 

In general, neither of the candidates mentioned above would satisfy condition (iii). 
Once such a matrix has been constructed, then its eigenvalues can be considered as 

the wavespeeds of the Riemann problem, and the projections of uR - uL onto its 
eigenvectors are the jumps which take place between intermediate states [l]. In [I], it 
is shown that (iii) is a sufficient condition for the algorithm produced by the 
mechanism to be conservative. It is also shown that (iii) and (iv) are necessary and 
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sufficient conditions for the algorithm to “recognize” a shockwave. By this we mean 
that if (uL, uR) satisfy the jump condition 

(F, - F,d = 0, - 4 (5) 
for some scalar S, then, by (iii), S is an eigenvalue of 2. A projection of (uL, uR) 
onto the eigenvectors of 2 will (because of (iv)) be solely onto the eigenvector which 
corresponds to S. In this special case, the solution of the Riemann problem will be 
exact. 

Evidently (ii) is a necessary condition if we are to recover smoothly the linearized 
algorithm from the non-linear version. 

Collectively, this list of properties has been christened Property U (since it is 
intended to ensure uniform validity across discontinuities). It is thought to specify 
desirable properties of a Riemann solver because of the following heuristic argument. 
Consider a region of the x, t plane containing O(N’) points and traversed by a finite 
number of discontinuities. At the majority of points, nothing very special is 
happening, and the choice of method is not critical. At a number of points which is 
O(N), we are close to a single discontinuity; here Property U will allow us to 
recognize the situation, and to deal with it appropriately. At a number of points 
which is 0( 1), we are close to two or more discontinuities, and such a situation will 
not be resolved on a fixed grid. In accordance with the shock-capturing philosophy, 
we must here put our trust in conservation, which is also assured by Property U. 

If we have to deal with more space dimensions, say (x, y) as well as t, then 
successful shock-capturing involves additional difficulties. One of these is that there is 
no obvious “generalized Riemann problem” to serve as a building block. In practice, 
it has been found [ 121 that if the multidimensional operator is split into a sequence of 
one-dimensional operators, then the present method may be applied to each operator. 
This gives good results so long as the shockwaves remain aligned with the computing 
grid; such shockwaves are accurately recognized and appropriately treated. Problems 
arise when the shockwave lies obliquely across the grid, and are particularly severe as 
the solutions attempts to reach a steady state. This is because neither of the split 
operators, by itself, recognizes the oblique shock as being in equilibrium. Under these 
conditions, the concept of operator splitting becomes rather dubious, but the finding 
of a satisfactory alternative is beyond the scope of this paper. 

CONSTRUCTION OF A 

It is very easy to construct A’ so that it meets conditions (i) and (ii) above. 
Condition (iv) is easily checked a posteriori. The difficulty lies entirely with condition 
(iii). The existence of an x satisfying condition (iii) follows from the mean value 
theorem. Let 0 be a parameter which varies linearly between 0 and 1 along a straight 
path connecting uL to uR, so that 

u(B) = UL + B(UR - IQ; du=(u,-u,)dtl. 
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Then 

F(uR) - F(u,) = j’ $ d0 

= 1A(e)$+9 I 0 

= ‘A(8)dl3. (UR -uJ I 0 

whence 

A = j1 A @I) de. 
0 

However, the integrals involved may not emerge in closed form, or the closed form 
might be expensive to compute. By a more subtle choice of path, candidates for 2 can 
be found which are integrable, and an approach similar to this has been taken by 
Osher and Solomon [ 121. 

Since computational speed is a major requirement, it is interesting to remark that 
in the common case where each component of F is a rational function of the 
components of u, an x can be found whose entries are likewise rational functions of 
the components of u. The following identities are obviously true for arbitrarily large 
jumps of any scalar quantities, where A(.) = (.)L - ( .)R : 

A(P+q)-AP+Aq, 
A (pq) = PAq + 4 AP, 

A(l/q) = -4/q*2, 

(64 
(6b) 

(6~) 

where the overbar denotes an arithmetic, and the asterisk a geometric, mean value. In 
this way we shall be lead to a formula of the form 

Fj(“L) -Fj(uR) = 7 “ij[(uiG. - (“i)R1, 

(7) 

where each Z, depends on u, and uR. The matrix whose entries are ~7, satisfies 
conditions (i) to (iii) of Property U. 

Matrices for the unsteady Euler equations were constructed in this way, and are 
given in [ 111. However, there are many disadvantages to this construction. 

In the first place, it is far from unique, as may easily be seen by applying the 
second of the above formulae in an obvious way to A(pqr) and noting that the 
outcome depends on the order of doing the multiplications. Secondly, the formulae 
obtained tend to be rather cumbersome, especially bearing in mind that we actually 

581/43/2-12 



362 P. L. ROE 

want to obtain analytical expressions for the eigenvalues and eigenvectors of A”. Not 
only does the algebra become almost impossible to carry through without error, but 
the whole object of creating a neat and efficient approximate solution is being 
defeated. We present in the following section a simple device which has so far worked 
each time that it has been tried. Indeed, in the case of the Euler equations, it 
simplifies the structure so much that it may well have applications outside the present 
context. 

THE PARAMETER VECTOR 

The inspiration for this section is taken from the common experience in analytic 
geometry that a plane curve v(x) may in some cases be much more easily described 
by a parametric form y = y(t), x =x(t). We may therefore expect that a multidimen- 
sional manifold such as F(u) may sometimes be more amenable if represented as 
F = F(w), u = u(w) where we may speak of w as a parameter vector. We now exhibit 
a very useful parameter vector for the Euler equations, which we write as 

where 

G= 

PV 
PUV 

p +pu2 

i 

7 H= 
POW 

4~ + 4 

PW 
PUW t 1 PV w 

P+Pw2 
W(P + 4 

in which p = density, p = static pressure, (u, v, w) = velocity in Cartesian coordinates 
(x, y, z), and e is the total energy, related to the other variables by an equation of 
state which, for a perfect gas, is 

e=& + fp(u2 + v2 + w’). (10) 

Various special cases (two dimensional, steady, etc.) follow obviously by striking 
out the irrelevant terms. We assert that every component of u, F, G, H is merely 
quadratic in the components of 

w = p y 1, 24, v, w, H)T, (11) 
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where total enthalpy H is related to previously defined quantities by pH = e t p. 
Other choices are possible for this fifth component, but lead to marginally more 
complicated algebra. 

The truth of this is obvious in most cases. For example, u, = w:, G, = w3 w4, etc. 
Some of the less obvious ones are 

Wl w5 
u, =-+ 

Y 
7 <w: t w; t w:>, 

F=Y-l 
2 -w, wg f J+ w; -G <w; + w:> 

Y 
Wb) 

and G,, H, follow by symmetry. 
It is now very easy to represent any jump in the spaces u, F, G, H in terms of its 

image in the space w, merely by use of (6b). For example, given any pair of states 

where 

(IQ, uR) and their images (wL,wR) we can write 

(u, - UR) z B(w, - WR), 

0 0 
0 0 
0 0 BE 

where 

and all the overbars denote arithmetic means. Likewise we can write 

(F, - F,J = c(w, - wR), 

Y-l w i- y w2 0 0 0 ytl - 5-y-2 Wl W4 $3 : 2ILfi w2 Y - 0 0 0 3 

WS 

--y--lw w2 y - 0 0 0 47-Y y-l - 0 0 0 - 

w2 

(13) 

(14) 

(15) 

i 

- (16) 

Obviously these very simple formulae are closely related to the homogeneous 
property of the Euler equations. The vectors u, F, G, H are each homogeneous of 
order one with respect to any of the others; also each of them is homogeneous of 
order two with respect to w. However, the homogeneous property is not essential for 
the existence of a parameter vector. The reader may experiment with parameter 
vectors for the shallow-water equations, which do not have the homogeneous 
property. 
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EIGENVECTORS AND EIGENVALUES FOR THE EULER EQUATIONS 

Now suppose that we wish to analyse (by operator splitting) some problem of 
unsteady three-dimensional flow. We will wish to construct the eigenvalues and eigen- 
vectors of some matrix A which maps du onto LIF with Property U. (The matrices 
which map Au onto AG, AH, will follow from symmetry.) Evidently we may choose 
2 = (C?)(g)-‘. To find the eigenvalues of this mapping we may solve 

i.e., 

i.e., 

((e)(B)-’ -AZ) Au = 0, 

(&@Aw=O, 

det(C - AI?) = 0. 

(17) 

(18) 

At this stage it is convenient to divide through by “T,, and then to adopt a 
convention that for the remainder of this paper u, for example, means 

with a similar interpretation for v, w, H, i.e., 

W3 v=y, wzw,, 

WI WI 
H=$ 

Then (18) reduces to 

(A - u)‘[(A - u)’ - (y - l)(H - f(u’ + v2 + w’)}] = 0. (19) 

To find the eigenvectors, it is easiest to begin by finding their images in G-space 
(by solving (17) with k set equal to a root of (19)), and then mapping into u-space. 
The results are 

1 
u-a 

e, = V 

W 

H-ua 

0 
0 

i ii 

3 e2= v , e3 = 
0 

V2 

e4 = 

1 
u+a 

V 

W 

H + ua 

(20) 
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(where q* = U* + uz + W’ and u* = (y - l)[H - )q*]) corresponding to the eigenvalues 

1, =u-a, /I, = u, A3=u, 1, = u, I,=u+a. (21) 

To complete the analysis we must show how to project an arbitrary du onto the 
eigenvectors as basis, i.e., how to find the coefficients ai in 

AU = 1 a,e,. 

A routine calculation yields 

a2 
-a,=(H-q*)Au,+uAu,+vAu,+wAu,-Au,, 
Y-1 

wa,=Au,-wdu,, 

(224 

Pb) 

va,=Au,-vdu,, PC) 

a, +a,=Au, -ad, (224 

a@, - a,) = Au, - u Au,. PW 

For computational purposes, it is better to extract factors V, w, from e2, e3, so that 
a*, a3 are never indeterminate. If this is done, we carry out the a posteriori check that 
the eigenvectors form a linearly independent set by arranging them into a matrix and 
finding the determinant; this comes out to be 2a3/(y - l), which is never small unless 
the Mach number is very large. 

If we wish to solve problems of wholly supersonic flow by marching in the x- 
direction, then we need a similar analysis for the mapping AF + AG. This follows an 
identical pattern, but the results are slightly more complicated. The equation for the 
eigenvalues is 

(Au - ?I)‘[ (h - 0)’ - a*( 1 + A’)] = 0 

from which we obtain eigenvectors 

(23) 

e, = 

1 
0 

e2 = 0 
0 

-H 

1 t jq’/H 
2u 

e4 = 22, 
2w 

H t fq’ 

e3= 

i 
(24) 
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corresponding to the eigenvalues 

A,= 
v - u/R 

A4=$ A,= 
v + u/R 

u + v/R ’ u u - v/R ’ (25) 

where 

u2 + v2 R==-- 
a2 1. 

As before, we complete the solution by expressing 

AF = i aiei 

(26) 

and we quote the results, for which it is convenient to introduce 

S=a,+a,+2a,. (27) 

Then we have 

2Ha,=HAF,-AF,, 

q2S=uAF,+vAF,, 

2Ha, = AF, - wS, 

(1 -4q2/H)a,=S+a,-AF,, 

q*(a, - a,) = R(u AF, - v AI;,), 

a,+a,=S-2a,. 

(2W 

(28b) 

(28~) 

WW 

(284 

(280 

The a posteriori check on independence of the eigenvalues leads to a determinant 
value of 8a2H(u2 + v*)IR, confirming our expectation that the only troublesome 
conditions in supersonic flow will be those where the local Mach number is very 
large, or its x-component close to unity. Notice that this analysis simplifies usefully 
for the common special case of isoenergetic flow, defined by H = constant. This 
condition replaces the fifth equation in the Euler system, and we may delete the 
second eigenvector, since some simple algebra reveals that a2 = 0 in isoenergetic flow. 
Also we can shorten the solution for the (ai}. 

Strictly, no such simplification is possible in the unsteady case, since even if a flow 
originates in an isoenergetic stream, it will not remain isoenergetic unless very special 
conditions apply. However, a fictitious flow is a legitimate device for computing 
towards the steady state, as discussed by Viviand [ 131. There are several ways to do 
this, and it is not easy to see which will converge fastest to the steady state. However, 
from the viewpoint of the present analysis, some alternatives are much simpler than 



APPROXIMATE RIEMANN SOLVERS 361 

others. This can be illustrated by means of the one-dimensional unsteady equations. 
Consider the momentum equation 

@u>, + (P + PU’), = 0 (2% 

where, in order to discuss the differential equations, we have reverted to conventional 
notation. We will eliminate p from this equation by making some assumption which 
is valid in the steady limit, and the result will combine with the continuity equation to 
give a pair of equations which can be solved for @, u). 

One strategy is to assume H = constant, and then differentiate H with respect to x, 
so obtaining 

p,=a2p,~(Ypupuu,. 
Y 1’ 

The eigenvalues which arise from this approach are the roots of 

pi’-(y+ l)u~+z&-2=0 (31) 

in which, as previously, a* = (y - l)[H - $‘I. These are not the eigenvalues of the 
real time-dependent flow, although it is interesting that in both cases u2 = u2 
produces a zero root. This strategy is mentioned by Viviand [ 131. 

Alternatively, we assume 

px = a%, (32) 

with the same definition of a’, and then the eigenvalues are found to be the roots of 

12-2uI+u2-a2=0 (33) 

just as in the real-time flow. There is no real paradox in reaching the contradictory 
conditions (3 1) and (33) from the false assumption H = constant. 

To implement the assumption (32), it can be shown that we must delete the fifth 
component from the eigenvectors in (20) and delete the fourth eigenvector from the 
list, whilst replacing (22a) by a4 = 0. By taking this approach, the present method 
leads to a pseudo-time-dependent analysis of very simple structure. 

A NUMERICAL EXPERIMENT 

It is doubtful whether the accuracy of an approximate Riemann solution can 
profitably be discussed without reference to its intended use, so that numerical 
evidence has only a very limited value. However, one particular experiment has lead 
to a rather striking result which does seem worth reporting. A variety of a new and 
established finite-difference schemes were compared by Sod [ 141 on the basis of their 
performance on a standard shock-tube problem formulated in Eulerian coordinates. 
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I O 3.0 
I I 

0 x/t 2.0 

FIG. 1. Exact and approximate solutions to a Riemann problem. 

The density ratio was taken to be 1:8, and the pressure ratio 1: 10. In Fig. 1 we 
compare the exact solution for the density distribution with the present approx- 
imation. The comparison is not very close, but it is worth observing that the area 
beneath the two curves is identical (and can readily be proved so). 

Now consider what happens if the exact Riemann solution is used in conjunction 
with Godunov’s [4] finite-difference scheme to solve the same problem by advancing 
35 time steps with At/Ax = 0.411 (Sod’s standard comparison). Truncation error in 
the finite-difference scheme degrades the results, producing the somewhat smeared 
solution shown in Fig. 2. Now, if Godunov’s scheme is applied to the linear advection 
equation, it reduces to first-order upwind differencing. First-order upwind differencing 
can be passed through the mechanism described in [ 1 ] to produce a new, non-linear, 
first-order scheme, in which is embedded the present approximation. We can then try 
out the new scheme on the same test problem. Now by contrast, matters improve 
after the first time step. When compared on the standard basis (35 time steps) the 
differences between the two solutions are insignificant everywhere. They are largest 
near the progressing shockwave, but even there, Table I shows that they are very 
small. 

The fact that the differences between the two solutions are so slight, compared with 
the truncation errors which exist in both, supports the arguments put forward in the 
Introduction. More accurate solutions to the same problem by methods involving the 
present analysis, are shown in [ 11. 

It may be interesting to insert here some observations concerning run times for the 
two methods. An attempt was made to eliminate subjective bias from the comparison 
by having rival programmers work on each method and the exercise formed part of a 
small project to improve programming technique. The algorithm for the exact 
solution was taken from Sod [ 141, but was improved in various small ways. At the 
time of the exercise, the version due to van Leer [7] was not available. However, this 
would probably not affect the results much since van Leer’s main contribution is to 
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o.“~ 
20 40 60 60 Index 

FIG. 2. Numerical solution to a shock-tube problem, incorporating either the exact or the 
imate Riemann solution in a first-order upwind difference scheme. 

approx- 

reduce the number of iterations required to reach convergence, and on average only 
1.6 iterations were needed anyway. Each of these iterations was found to take 
0.20 msec on a DEC KL-10 computer using its optimised FORTRAN compiler, so 
that the total time spent on solving the Riemann problems was 0.20 x 1.6 X 99 grid 
intervals X 35 time steps X 10m3 = 1.11 sec. The total CPU time, excluding 
input/output operations, was 2.02 set, the remaining 0.91 set being accounted for by 
the Godunov differencing scheme into which the Riemann solutions were incor- 
porated. 

TABLE I 

Computed density 
Index 

(I) - Godunov Ref. [I] 

12 0.2658 0.2655 
73 0.2654 0.2652 
14 0.263 1 0.2629 
75 0.2460 0.2458 
76 0.1878 0.1881 
71 0.1368 0.1370 
78 0.1260 0.1260 
79 0.1251 0.1251 
80 0.1250 0.1250 
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To find an approximate solution of each Riemann problem by the present method 
took 0.27 msec, so that the total time spent solving Riemann problems was 0.94 set, 
not in itself a very significant reduction. However, the pay-off comes from the fact 
that the information is immediately available in usable form, as time increments of u 
due to each wave system. This meant that the total CPU time (again excluding 
input/output operations) was only 1.09 sec. Furthermore, this same feature could be 
exploited in higher-order algorithms, of the kind described in [ 11. A typical second- 
order algorithm took about 1.20 set, and the incorporation of additional logic to 
make the results monotone raised the time to 1.78 sec. The third-order monotone 
results shown in [l] took 1.90 set to produce. 

A NOTE ON ENTROPY CONDITIONS 

The main purpose served by introducing a Riemann solver (either exact or approx- 
imate) into a finite-difference scheme is presumably that of providing physical realism 
by correctly discriminating between information which should propagate with 
different speeds. The most basic distinction is simply between information which 
should propagate to the left or to the right. When the Riemann problem is solved 
exactly for a flux difference Fi+ 1 - Fi = dF,+ ,,*, this is accomplished as follows. Let 
F, be the state obtained in the exact solution for x = 0, t > 0. Then 

&+,,,=F,-F,, 

A@i+l/2=Fi+l -FM, 

where the arrows denote contributions from left- and right-moving waves. In the 
present approximation we have (dropping the i subscript) 

AF = c ljajej 

and we identify the left- and right-moving components as 

AF = c Ajajej (nj < O), 

A@ = c Ljajej (lj > 0). 
j 

Now this identification fails, and some of the realism may be lost, if one of the 
waves (let us say the kth wave) should in fact be a fan which spans x = 0. In the 
exact solution part of the kth wave contributions to Af, and the remainder to AF, but 
in the approximate solution all of the kth wave will contribute to one or the other, 
depending on the sign of I,. An extreme example of this failure arises if we consider 
an interval for which F, = Fi+, , ui # ui+ , , and conditions are such that an expansion 
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should occur, rather than a shockwave. In such a case, although dF is zero, dE and 
d@, as determined by the exact Riemann solution, will be equal and opposite. A 
differencing scheme which uses this information can break the discontinuity into the 
correct fan-like structure. 

The present approximate analysis, if applied straightforwardly, would yield 
& = A$ = 0 and so provide no motive for breaking up the unrealistic discontinuity. 
An empirical cure for the problem is not hard to devise. For each interval which 
contains a sonic point one creates artificially an equal and opposite contribution to 
AP and AF. Work is in hand to provide a fuller theoretical justification for this 
process, and to find its neatest implementation. 

It is quite possible that these precautions may sometimes be dispensed with. When 
the present methods have been applied to analyse the transonic flow over aerofoils 
[ 1 1 ] no special treatment was found necessary near the sonic line. However, it would 
be unwise to rely on such computations in any case where the physical correctness of 
the solution was less apparent. The prospective user would be advised to employ 
either an empirical device of the kind described above, or some form of artificial 
viscosity. A general theory which combines approximate Tiemann solvers and 
artificial viscosities has been presented by Harten and Lax [lo]. 

CONCLUDING REMARKS 

In [ 1 ] we described a strategy for obtaining numerical solutions to hyperbolic 
initial-value problems. In the present paper we have enlarged the details of one 
element in that strategy, but feel that our results may perhaps find wider application. 
Our investigations into the Euler equations have revealed some very tidy structures. 
Also the existence of a fast approximate Riemann solver may be found more 
generally useful. Our programming experience is that the present direct method is 
about as time-consuming as one cycle of the iterative procedures mentioned in the 
Introduction. In the majority of cases which arise in a finite-difference calculation, 
the direct solution is already very accurate and might be used to reduce the number 
of iterations needed to obtain any more exact solutions which may be required. 
However, this approach has yet to be explored. Finally we remark that a variety of 
interesting formulae may be obtained by translating the results of this paper from 
conservative variables into physical variables, such as @, U, U, w, p). 
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